Nonlinear System Identification via Tensor Completion

06/13/2019
by   Nikolaos Kargas, et al.
0

Function approximation from input and output data pairs constitutes a fundamental problem in supervised learning. Deep neural networks are currently the most popular method for learning to mimic the input-output relationship of a generic nonlinear system, as they have proven to be very effective in approximating complex highly nonlinear functions. In this work, we propose low-rank tensor completion as an appealing alternative for modeling and learning complex nonlinear systems. We model the interactions between the N input variables and the scalar output of a system by a single N-way tensor, and setup a weighted low-rank tensor completion problem with smoothness regularization which we tackle using a block coordinate descent algorithm. We extend our method to the multi-output setting and the case of partially observed data, which cannot be readily handled by neural networks. Finally, we demonstrate the effectiveness of the approach using several regression tasks including some standard benchmarks and a challenging student grade prediction task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset