Nonfractional Memory: Filtering, Antipersistence, and Forecasting

01/20/2018
by   J. Eduardo Vera-Valdés, et al.
0

The fractional difference operator remains to be the most popular mechanism to generate long memory due to the existence of efficient algorithms for their simulation and forecasting. Nonetheless, there is no theoretical argument linking the fractional difference operator with the presence of long memory in real data. In this regard, one of the most predominant theoretical explanations for the presence of long memory is cross-sectional aggregation of persistent micro units. Yet, the type of processes obtained by cross-sectional aggregation differs from the one due to fractional differencing. Thus, this paper develops fast algorithms to generate and forecast long memory by cross-sectional aggregation. Moreover, it is shown that the antipersistent phenomenon that arises for negative degrees of memory in the fractional difference literature is not present for cross-sectionally aggregated processes. Pointedly, while the autocorrelations for the fractional difference operator are negative for negative degrees of memory by construction, this restriction does not apply to the cross-sectional aggregated scheme. We show that this has implications for long memory tests in the frequency domain, which will be misspecified for cross-sectionally aggregated processes with negative degrees of memory. Finally, we assess the forecast performance of high-order AR and ARFIMA models when the long memory series are generated by cross-sectional aggregation. Our results are of interest to practitioners developing forecasts of long memory variables like inflation, volatility, and climate data, where aggregation may be the source of long memory.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
12/21/2017

On Long Memory Origins and Forecast Horizons

Most long memory forecasting studies assume that the memory is generated...
research
12/21/2021

Short range vs long range dependence. An hyppothesis test based on Fractional Iterated Ornstein–Uhlenbeck processes

In this work, which is based on the family of Fractional Iterated Ornste...
research
02/17/2021

A high-order L2 type difference scheme for the time-fractional diffusion equation

The present paper is devoted to constructing L2 type difference analog o...
research
08/24/2021

A second order difference scheme for time fractional diffusion equation with generalized memory kernel

In the current work we build a difference analog of the Caputo fractiona...
research
05/04/2018

The conformable fractional grey system model

The fractional order grey models (FGM) have appealed considerable intere...
research
08/05/2020

A long memory time series with a periodic degree of fractional differencing

This article develops a periodic version of a time varying parameter fra...
research
03/25/2023

Exactly mergeable summaries

In the analysis of large/big data sets, aggregation (replacing values of...

Please sign up or login with your details

Forgot password? Click here to reset