Nonconvex Nonsmooth Low-Rank Minimization for Generalized Image Compressed Sensing via Group Sparse Representation

11/18/2019 ∙ by Yunyi Li, et al. ∙ 0

Group sparse representation (GSR) based method has led to great successes in various image recovery tasks, which can be converted into a low-rank matrix minimization problem. As a widely used surrogate function of low-rank, the nuclear norm based convex surrogate usually leads to over-shrinking problem, since the standard soft-thresholding operator shrinks all singular values equally. To improve traditional sparse representation based image compressive sensing (CS) performance, we propose a generalized CS framework based on GSR model, leading to a nonconvex nonsmooth low-rank minimization problem. The popular L_2-norm and M-estimator are employed for standard image CS and robust CS problem to fit the data respectively. For the better approximation of the rank of group-matrix, a family of nuclear norms are employed to address the over-shrinking problem. Moreover, we also propose a flexible and effective iteratively-weighting strategy to control the weighting and contribution of each singular value. Then we develop an iteratively reweighted nuclear norm algorithm for our generalized framework via an alternating direction method of multipliers framework, namely, GSR-ADMM-IRNN. Experimental results demonstrate that our proposed CS framework can achieve favorable reconstruction performance compared with current state-of-the-art methods and the RCS framework can suppress the outliers effectively.



There are no comments yet.


page 21

page 22

page 26

page 27

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.