Non-Uniform Stochastic Average Gradient Method for Training Conditional Random Fields

04/16/2015
by   Mark Schmidt, et al.
1

We apply stochastic average gradient (SAG) algorithms for training conditional random fields (CRFs). We describe a practical implementation that uses structure in the CRF gradient to reduce the memory requirement of this linearly-convergent stochastic gradient method, propose a non-uniform sampling scheme that substantially improves practical performance, and analyze the rate of convergence of the SAGA variant under non-uniform sampling. Our experimental results reveal that our method often significantly outperforms existing methods in terms of the training objective, and performs as well or better than optimally-tuned stochastic gradient methods in terms of test error.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro