Non-self adjoint impedance in Generalized Optimized Schwarz Methods

08/08/2021
by   Xavier Claeys, et al.
0

We present a convergence theory for Optimized Schwarz Methods that rely on a non-local exchange operator and covers the case of coercive possibly non-self-adjoint impedance operators. This analysis also naturally deals with the presence of cross-points in subdomain partitions of arbitrary shape. In the particular case of self-adjoint impedance, we recover the theory proposed in [Claeys Parolin, 2021].

READ FULL TEXT

page 1

page 2

page 3

page 4

03/14/2020

Robust treatment of cross points in Optimized Schwarz Methods

In the field of Domain Decomposition (DD), Optimized Schwarz Method (OSM...
04/07/2022

A unified theory of non-overlapping Robin-Schwarz methods – continuous and discrete, including cross points

Non-overlapping Schwarz methods with generalized Robin transmission cond...
05/13/2022

Transmission operators for the non-overlapping Schwarz method for solving Helmholtz problems in rectangular cavities

In this paper we discuss different transmission operators for the non-ov...
11/20/2014

An algorithm for improving Non-Local Means operators via low-rank approximation

We present a method for improving a Non Local Means operator by computin...
06/24/2020

Self-Convolution: A Highly-Efficient Operator for Non-Local Image Restoration

Constructing effective image priors is critical to solving ill-posed inv...
05/28/2022

So3krates – Self-attention for higher-order geometric interactions on arbitrary length-scales

The application of machine learning methods in quantum chemistry has ena...
10/30/2018

Neural Nearest Neighbors Networks

Non-local methods exploiting the self-similarity of natural signals have...