Non-Parametric Manifold Learning

07/16/2021
by   Dena Asta, et al.
0

We introduce an estimator for manifold distances based on graph Laplacian estimates of the Laplace-Beltrami operator. We show that the estimator is consistent for suitable choices of graph Laplacians in the literature, based on an equidistributed sample of points drawn from a smooth density bounded away from zero on an unknown compact Riemannian submanifold of Euclidean space. The estimator resembles, and in fact its convergence properties are derived from, a special case of the Kontorovic dual reformulation of Wasserstein distance known as Connes' Distance Formula.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro