Non-Invertible-Element Constacyclic Codes over Finite PIRs

11/24/2020
by   Hongwei Liu, et al.
0

In this paper we introduce the notion of λ-constacyclic codes over finite rings R for arbitary element λ of R. We study the non-invertible-element constacyclic codes (NIE-constacyclic codes) over finite principal ideal rings (PIRs). We determine the algebraic structures of all NIE-constacyclic codes over finite chain rings, give the unique form of the sets of the defining polynomials and obtain their minimum Hamming distances. A general form of the duals of NIE-constacyclic codes over finite chain rings is also provided. In particular, we give a necessary and sufficient condition for the dual of an NIE-constacyclic code to be an NIE-constacyclic code. Using the Chinese Remainder Theorem, we study the NIE-constacyclic codes over finite PIRs. Furthermore, we construct some optimal NIE-constacyclic codes over finite PIRs in the sense that they achieve the maximum possible minimum Hamming distances for some given lengths and cardinalities.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset