Non-imaging real-time detection and tracking of fast-moving objects
Real-time detection and tracking of fast-moving objects have achieved great success in various fields. However, many existing methods, especially low-cost ones, are difficult to achieve real-time and long-term object detection and tracking. Here, a non-imaging strategy is proposed, including two stages, to realize fast-moving object detection and tracking in real-time and for the long term: 1) a contour-moments-based method is proposed to optimize the Hadamard pattern sequence. And then reconstructing projection curves of the object based on single-pixel imaging technology. The projection curve, which including the object location information, is reconstructed directly with the measurements collected by a single-pixel detector; 2) The fastest changing position in the projection curve can be obtained by solving first-order gradients. A gradient differential is used in two first-order gradients to calculate a differential curve with the sudden change positions. Finally, we can obtain the boundary information of the fast-moving object. We experimentally demonstrate that our approach can achieve a temporal resolution of 105 frames per second at a 1.28 sampling rate by using a 22,000 Hz digital micro-mirror device. The detection and tracking algorithm of the proposed strategy is computationally efficient. Compared with the state-of-the-art methods, our approach can make the sampling rate lower. Additionally, the strategy acquires not more than 1MB of data for each frame, which is capable of fast-moving object real-time and long-term detection and tracking.
READ FULL TEXT