Non-IID Graph Neural Networks

05/22/2020
by   Yiqi Wang, et al.
0

Graph classification is an important task on graph-structured data with many real-world applications. The goal of graph classification task is to train a classifier using a set of training graphs. Recently, Graph Neural Networks (GNNs) have greatly advanced the task of graph classification. When building a GNN model for graph classification, the graphs in the training set are usually assumed to be identically distributed. However, in many real-world applications, graphs in the same dataset could have dramatically different structures, which indicates that these graphs are likely non-identically distributed. Therefore, in this paper, we aim to develop graph neural networks for graphs that are not non-identically distributed. Specifically, we propose a general non-IID graph neural network framework, i.e., Non-IID-GNN. Given a graph, Non-IID-GNN can adapt any existing graph neural network model to generate a sample-specific model for this graph. Comprehensive experiments on various graph classification benchmarks demonstrate the effectiveness of the proposed framework. We will release the code of the proposed framework upon the acceptance of the paper.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset