Non-Ideal Program-Time Conservation in Charge Trap Flash for Deep Learning

07/12/2023
by   Shalini Shrivastava, et al.
0

Training deep neural networks (DNNs) is computationally intensive but arrays of non-volatile memories like Charge Trap Flash (CTF) can accelerate DNN operations using in-memory computing. Specifically, the Resistive Processing Unit (RPU) architecture uses the voltage-threshold program by stochastic encoded pulse trains and analog memory features to accelerate vector-vector outer product and weight update for the gradient descent algorithms. Although CTF, offering high precision, has been regarded as an excellent choice for implementing RPU, the accumulation of charge due to the applied stochastic pulse trains is ultimately of critical significance in determining the final weight update. In this paper, we report the non-ideal program-time conservation in CTF through pulsing input measurements. We experimentally measure the effect of pulse width and pulse gap, keeping the total ON-time of the input pulse train constant, and report three non-idealities: (1) Cumulative V_T shift reduces when total ON-time is fragmented into a larger number of shorter pulses, (2) Cumulative V_T shift drops abruptly for pulse widths < 2 μs, (3) Cumulative V_T shift depends on the gap between consecutive pulses and the V_T shift reduction gets recovered for smaller gaps. We present an explanation based on a transient tunneling field enhancement due to blocking oxide trap-charge dynamics to explain these non-idealities. Identifying and modeling the responsible mechanisms and predicting their system-level effects during learning is critical. This non-ideal accumulation is expected to affect algorithms and architectures relying on devices for implementing mathematically equivalent functions for in-memory computing-based acceleration.

READ FULL TEXT
research
03/09/2020

Software-Level Accuracy Using Stochastic Computing With Charge-Trap-Flash Based Weight Matrix

The in-memory computing paradigm with emerging memory devices has been r...
research
03/08/2023

Fast offset corrected in-memory training

In-memory computing with resistive crossbar arrays has been suggested to...
research
03/25/2020

ESSOP: Efficient and Scalable Stochastic Outer Product Architecture for Deep Learning

Deep neural networks (DNNs) have surpassed human-level accuracy in a var...
research
10/02/2022

Reliability-Aware Deployment of DNNs on In-Memory Analog Computing Architectures

Conventional in-memory computing (IMC) architectures consist of analog m...
research
02/15/2023

XploreNAS: Explore Adversarially Robust Hardware-efficient Neural Architectures for Non-ideal Xbars

Compute In-Memory platforms such as memristive crossbars are gaining foc...

Please sign up or login with your details

Forgot password? Click here to reset