Non-entailed subsequences as a challenge for natural language inference

11/29/2018
by   R. Thomas McCoy, et al.
0

Neural network models have shown great success at natural language inference (NLI), the task of determining whether a premise entails a hypothesis. However, recent studies suggest that these models may rely on fallible heuristics rather than deep language understanding. We introduce a challenge set to test whether NLI systems adopt one such heuristic: assuming that a sentence entails all of its subsequences, such as assuming that "Alice believes Mary is lying" entails "Alice believes Mary." We evaluate several competitive NLI models on this challenge set and find strong evidence that they do rely on the subsequence heuristic.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset