Non-contact Atrial Fibrillation Detection from Face Videos by Learning Systolic Peaks

by   Zhaodong Sun, et al.

Objective: We propose a non-contact approach for atrial fibrillation (AF) detection from face videos. Methods: Face videos, electrocardiography (ECG), and contact photoplethysmography (PPG) from 100 healthy subjects and 100 AF patients are recorded. All the videos in the healthy group are labeled as healthy. Videos in the patient group are labeled as AF, sinus rhythm (SR), or atrial flutter (AFL) by cardiologists. We use the 3D convolutional neural network for remote PPG measurement and propose a novel loss function (Wasserstein distance) to use the timing of systolic peaks from contact PPG as the label for our model training. Then a set of heart rate variability (HRV) features are calculated from the inter-beat intervals, and a support vector machine (SVM) classifier is trained with HRV features. Results: Our proposed method can accurately extract systolic peaks from face videos for AF detection. The proposed method is trained with subject-independent 10-fold cross-validation with 30s video clips and tested on two tasks. 1) Classification of healthy versus AF: the accuracy, sensitivity, and specificity are 96.16 accuracy, sensitivity, and specificity are 95.31 Conclusion: We achieve good performance of non-contact AF detection by learning systolic peaks. Significance: non-contact AF detection can be used for self-screening of AF symptom for suspectable populations at home, or self-monitoring of AF recurrence after treatment for the chronical patients.


A Supervised Learning Approach for Robust Health Monitoring using Face Videos

Monitoring of cardiovascular activity is highly desired and can enable n...

Voiceprint recognition of Parkinson patients based on deep learning

More than 90 disorders. Speech impairment is already indicator of PD. Th...

Real Time Video based Heart and Respiration Rate Monitoring

In recent years, research about monitoring vital signs by smartphones gr...

COVID-19 Cough Classification using Machine Learning and Global Smartphone Recordings

We present a machine learning based COVID-19 cough classifier which is a...

Shoulder Physiotherapy Exercise Recognition: Machine Learning the Inertial Signals from a Smartwatch

Objective: Participation in a physical therapy program is considered one...

Detection of Inferior Myocardial Infarction using Shallow Convolutional Neural Networks

Myocardial Infarction is one of the leading causes of death worldwide. T...

Efficient Screening of Diseased Eyes based on Fundus Autofluorescence Images using Support Vector Machine

A variety of vision ailments are associated with geographic atrophy (GA)...

Please sign up or login with your details

Forgot password? Click here to reset