Non-Autoregressive Document-Level Machine Translation (NA-DMT): Exploring Effective Approaches, Challenges, and Opportunities

05/22/2023
by   Guangsheng Bao, et al.
0

Non-autoregressive translation (NAT) models have been extensively investigated within the context of sentence-level machine translation (MT) tasks, demonstrating comparable quality and superior translation speed when contrasted with autoregressive translation (AT) models. However, the challenges associated with multi-modality and alignment issues within NAT models become more prominent when increasing input and output length, leading to unexpected complications in document-level MT. In this paper, we conduct a comprehensive examination of typical NAT models in the context of document-level MT tasks. Experiments reveal that, although NAT models significantly accelerate text generation on documents, they do not perform as effectively as on sentences. To bridge this performance gap, we introduce a novel design that underscores the importance of sentence-level alignment for non-autoregressive document-level machine translation (NA-DMT). This innovation substantially reduces the performance discrepancy. However, it is worth noting that NA-DMT models are still far from perfect and may necessitate additional research to fully optimize their performance. We delve into the related opportunities and challenges and provide our code at https://github.com/baoguangsheng/nat-on-doc to stimulate further research in this field.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset