Noisy, Non-Smooth, Non-Convex Estimation of Moment Condition Models
A practical challenge for structural estimation is the requirement to accurately minimize a sample objective function which is often non-smooth, non-convex, or both. This paper proposes a simple algorithm designed to find accurate solutions without performing an exhaustive search. It augments each iteration from a new Gauss-Newton algorithm with a grid search step. A finite sample analysis derives its optimization and statistical properties simultaneously using only econometric assumptions. After a finite number of iterations, the algorithm automatically transitions from global to fast local convergence, producing accurate estimates with high probability. Simulated examples and an empirical application illustrate the results.
READ FULL TEXT