Node Co-occurrence based Graph Neural Networks for Knowledge Graph Link Prediction

04/15/2021 ∙ by Dai Quoc Nguyen, et al. ∙ 0

We introduce a novel embedding model, named NoKE, which aims to integrate co-occurrence among entities and relations into graph neural networks to improve knowledge graph completion (i.e., link prediction). Given a knowledge graph, NoKE constructs a single graph considering entities and relations as individual nodes. NoKE then computes weights for edges among nodes based on the co-occurrence of entities and relations. Next, NoKE utilizes vanilla GNNs to update vector representations for entity and relation nodes and then adopts a score function to produce the triple scores. Comprehensive experimental results show that our NoKE obtains state-of-the-art results on three new, challenging, and difficult benchmark datasets CoDEx for knowledge graph completion, demonstrating the power of its simplicity and effectiveness.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.