No-Regret Learning in Two-Echelon Supply Chain with Unknown Demand Distribution

10/23/2022
by   Mengxiao Zhang, et al.
0

Supply chain management (SCM) has been recognized as an important discipline with applications to many industries, where the two-echelon stochastic inventory model, involving one downstream retailer and one upstream supplier, plays a fundamental role for developing firms' SCM strategies. In this work, we aim at designing online learning algorithms for this problem with an unknown demand distribution, which brings distinct features as compared to classic online optimization problems. Specifically, we consider the two-echelon supply chain model introduced in [Cachon and Zipkin, 1999] under two different settings: the centralized setting, where a planner decides both agents' strategy simultaneously, and the decentralized setting, where two agents decide their strategy independently and selfishly. We design algorithms that achieve favorable guarantees for both regret and convergence to the optimal inventory decision in both settings, and additionally for individual regret in the decentralized setting. Our algorithms are based on Online Gradient Descent and Online Newton Step, together with several new ingredients specifically designed for our problem. We also implement our algorithms and show their empirical effectiveness.

READ FULL TEXT
research
06/11/2020

A Stochastic Biomass Blending Problem in Decentralized Supply Chains

Blending biomass materials of different physical or chemical properties ...
research
11/02/2022

Learning to Price Supply Chain Contracts against a Learning Retailer

The rise of big data analytics has automated the decision-making of comp...
research
11/25/2018

Online Newton Step Algorithm with Estimated Gradient

Online learning with limited information feedback (bandit) tries to solv...
research
04/26/2019

Online Learning Algorithms for Quaternion ARMA Model

In this paper, we address the problem of adaptive learning for autoregre...
research
07/08/2022

Online Learning in Supply-Chain Games

We study a repeated game between a supplier and a retailer who want to m...
research
11/05/2020

Efficient Online Learning of Optimal Rankings: Dimensionality Reduction via Gradient Descent

We consider a natural model of online preference aggregation, where sets...
research
04/12/2018

Online convex optimization and no-regret learning: Algorithms, guarantees and applications

Spurred by the enthusiasm surrounding the "Big Data" paradigm, the mathe...

Please sign up or login with your details

Forgot password? Click here to reset