Nitsche method for Navier-Stokes equations with slip boundary conditions: Convergence analysis and VMS-LES stabilization
In this paper, we analyze the Nitsche's method for the stationary Navier-Stokes equations on Lipschitz domains under minimal regularity assumptions. Our analysis provides a robust formulation for implementing slip (i.e. Navier) boundary conditions in arbitrarily complex boundaries. The well-posedness of the discrete problem is established using the Banach Nečas Babuška and the Banach fixed point theorems under standard small data assumptions, and we also provide optimal convergence rates for the approximation error. Furthermore, we propose a VMS-LES stabilized formulation, which allows the simulation of incompressible fluids at high Reynolds numbers. We validate our theory through numerous numerical tests in well established benchmark problems.
READ FULL TEXT