Newtonian Program Analysis of Probabilistic Programs

07/18/2023
by   Di Wang, et al.
0

Due to their quantitative nature, probabilistic programs pose non-trivial challenges for designing compositional and efficient program analyses. Many analyses for probabilistic programs rely on iterative approximation. This article presents an interprocedural dataflow-analysis framework, called NPA-PMA, for designing and implementing (partially) non-iterative program analyses of probabilistic programs with unstructured control-flow, nondeterminism, and general recursion. NPA-PMA is based on Newtonian Program Analysis (NPA), a generalization of Newton's method to solve equation systems over semirings. The key challenge for developing NPA-PMA is to handle multiple kinds of confluences in both the algebraic structures that specify analyses and the equation systems that encode control flow: semirings support a single confluence operation, whereas NPA-PMA involves three confluence operations (conditional, probabilistic, and nondeterministic). Our work introduces ω-continuous pre-Markov algebras (ωPMAs) to factor out common parts of different analyses; adopts regular infinite-tree expressions to encode program-execution paths in control-flow hyper-graphs; and presents a linearization method that makes Newton's method applicable to the setting of regular-infinite-tree equations over ωPMAs. NPA-PMA allows analyses to supply a non-iterative strategy to solve linearized equations. Our experimental evaluation demonstrates that (i) NPA-PMA holds considerable promise for outperforming Kleene iteration, and (ii) provides great generality for designing program analyses.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset