NewsDeps: Visualizing the Origin of Information in News Articles

09/23/2019 ∙ by Felix Hamborg, et al. ∙ 0

In scientific publications, citations allow readers to assess the authenticity of the presented information and verify it in the original context. News articles, however, do not contain citations and only rarely refer readers to further sources. Readers often cannot assess the authenticity of the presented information as its origin is unclear. We present NewsDeps, the first approach that analyzes and visualizes where information in news articles stems from. NewsDeps employs methods from natural language processing and plagiarism detection to measure article similarity. We devise a temporal-force-directed graph that places articles as nodes chronologically. The graph connects articles by edges varying in width depending on the articles' similarity. We demonstrate our approach in a case study with two real-world scenarios. We find that NewsDeps increases efficiency and transparency in news consumption by revealing which previously published articles are the primary sources of each given article.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.