New Optimal Periodic Control Policy for the Optimal Periodic Performance of a Chemostat Using a Fourier-Gegenbauer-Based Predictor-Corrector Method

07/10/2022
by   Kareem T. Elgindy, et al.
0

In its simplest form, the chemostat consists of microorganisms or cells which grow continually in a specific phase of growth while competing for a single limiting nutrient. Under certain conditions on the cells' growth rate, substrate concentration, and dilution rate, the theory predicts and numerical experiments confirm that a periodically operated chemostat exhibits an "over-yielding" state in which the performance becomes higher than that at the steady-state operation. In this paper we show that an optimal control policy for maximizing the chemostat performance can be accurately and efficiently derived numerically using a novel class of integral-pseudospectral methods and adaptive h-integral-pseudospectral methods composed through a predictor-corrector algorithm. Some new formulas for the construction of Fourier pseudospectral integration matrices and barycentric shifted Gegenbauer quadratures are derived. A rigorous study of the errors and convergence rates of shifted Gegenbauer quadratures as well as the truncated Fourier series, interpolation operators, and integration operators for nonsmooth and generally T-periodic functions is presented. We introduce also a novel adaptive scheme for detecting jump discontinuities and reconstructing a discontinuous function from the pseudospectral data. An extensive set of numerical simulations is presented to support the derived theoretical foundations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset