DeepAI AI Chat
Log In Sign Up

New heuristics for burning graphs

by   Zahra Rezai Farokh, et al.
Shahid Beheshti University

The concept of graph burning and burning number (bn(G)) of a graph G was introduced recently [1]. Graph burning models the spread of contagion (fire) in a graph in discrete time steps. bn(G) is the minimum time needed to burn a graph G.The problem is NP-complete. In this paper, we develop first heuristics to solve the problem in general (connected) graphs. In order to test the performance of our algorithms, we applied them on some graph classes with known burning number such as theta graphs, we tested our algorithms on DIMACS and BHOSLIB that are known benchmarks for NP-hard problems in graph theory. We also improved the upper bound for burning number on general graphs in terms of their distance to cluster. Then we generated a data set of 2000 random graphs with known distance to cluster and tested our heuristics on them.


page 1

page 2

page 3

page 4


2-CLUB is NP-hard for distance to 2-club cluster graphs

We show that 2-CLUB is NP-hard for distance to 2-club cluster graphs....

Faster Heuristics for Graph Burning

Graph burning is a process of information spreading through the network ...

Balanced Order Batching with Task-Oriented Graph Clustering

Balanced order batching problem (BOBP) arises from the process of wareho...

Fast Methods for Solving the Cluster Containment Problem for Phylogenetic Networks

Genetic and comparative genomic studies indicate that extant genomes are...

Quantum invariants for the graph isomorphism problem

Graph Isomorphism is such an important problem in computer science, that...

Heuristic Algorithms for Best Match Graph Editing

Best match graphs (BMGs) are a class of colored digraphs that naturally ...

Performance Models for Data Transfers: A Case Study with Molecular Chemistry Kernels

With increasing complexity of hardwares, systems with different memory n...