New Formulation of Mixed-Integer Conic Programming for Globally Optimal Grasp Planning

09/12/2019
by   Min Liu, et al.
0

We present a two-level branch-and-bound (BB) algorithm to compute the globally optimal gripper pose that maximizes a grasp metric. Our method can take the gripper's kinematics feasibility into consideration to ensure that a given gripper can reach the set of grasp points without collisions or predict infeasibility with finite-time termination when no pose exists for a given set of grasp points. Our main technical contribution is a novel mixed-integer conic programming (MICP) formulation for the inverse kinematics of the gripper that uses a small number of binary variables and tightened constraints, which can be efficiently solved via a low-level BB algorithm. Our experiments show that globally optimal gripper poses for various target objects can be computed taking 20-180 minutes of computation on a desktop machine and the computed grasp quality, in terms of the Q1 metric, is better than those generated using sampling-based planners.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset