New Constructions of MDS Twisted Reed-Solomon Codes and LCD MDS Codes

08/09/2020 ∙ by Hongwei Liu, et al. ∙ 0

Maximum distance separable (MDS) codes are optimal where the minimum distance cannot be improved for a given length and code size. Twisted Reed-Solomon codes over finite fields were introduced in 2017, which are generalization of Reed-Solomon codes. Twisted Reed-Solomon codes can be applied in cryptography which prefer the codes with large minimum distance. MDS codes can be constructed from twisted Reed-Solomon codes, and most of them are not equivalent to Reed-Solomon codes. In this paper, we first generalize twisted Reed-Solomon codes to generalized twisted Reed-Solomon codes, then we give some new explicit constructions of MDS (generalized) twisted Reed-Solomon codes. In some cases, our constructions can get MDS codes with the length longer than the constructions of previous works. Linear complementary dual (LCD) codes are linear codes that intersect with their duals trivially. LCD codes can be applied in cryptography. This application of LCD codes renewed the interest in the construction of LCD codes having a large minimum distance. We also provide new constructions of LCD MDS codes from generalized twisted Reed-Solomon codes.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.