Neuro-Fuzzy Algorithmic (NFA) Models and Tools for Estimation

07/31/2015 ∙ by Danny Ho, et al. ∙ 0

Accurate estimation such as cost estimation, quality estimation and risk analysis is a major issue in management. We propose a patent pending soft computing framework to tackle this challenging problem. Our generic framework is independent of the nature and type of estimation. It consists of neural network, fuzzy logic, and an algorithmic estimation model. We made use of the Constructive Cost Model (COCOMO), Analysis of Variance (ANOVA), and Function Point Analysis as the algorithmic models and validated the accuracy of the Neuro-Fuzzy Algorithmic (NFA) Model in software cost estimation using industrial project data. Our model produces more accurate estimation than using an algorithmic model alone. We also discuss the prototypes of our tools that implement the NFA Model. We conclude with our roadmap and direction to enrich the model in tackling different estimation challenges.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.