Neural Text Generation: Past, Present and Beyond

03/15/2018 ∙ by Sidi Lu, et al. ∙ 0

This paper presents a systematic survey on recent development of neural text generation models. Specifically, we start from recurrent neural network language models with the traditional maximum likelihood estimation training scheme and point out its shortcoming for text generation. We thus introduce the recently proposed methods for text generation based on reinforcement learning, re-parametrization tricks and generative adversarial nets (GAN) techniques. We compare different properties of these models and the corresponding techniques to handle their common problems such as gradient vanishing and generation diversity. Finally, we conduct a benchmarking experiment with different types of neural text generation models on two well-known datasets and discuss the empirical results along with the aforementioned model properties.



There are no comments yet.


This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.