Neural-Symbolic Inference for Robust Autoregressive Graph Parsing via Compositional Uncertainty Quantification

01/26/2023
by   Zi Lin, et al.
2

Pre-trained seq2seq models excel at graph semantic parsing with rich annotated data, but generalize worse to out-of-distribution (OOD) and long-tail examples. In comparison, symbolic parsers under-perform on population-level metrics, but exhibit unique strength in OOD and tail generalization. In this work, we study compositionality-aware approach to neural-symbolic inference informed by model confidence, performing fine-grained neural-symbolic reasoning at subgraph level (i.e., nodes and edges) and precisely targeting subgraph components with high uncertainty in the neural parser. As a result, the method combines the distinct strength of the neural and symbolic approaches in capturing different aspects of the graph prediction, leading to well-rounded generalization performance both across domains and in the tail. We empirically investigate the approach in the English Resource Grammar (ERG) parsing problem on a diverse suite of standard in-domain and seven OOD corpora. Our approach leads to 35.26 neural and symbolic approaches respectively, and 14 key tail linguistic categories over the neural model, outperforming prior state-of-art methods that do not account for compositionality or uncertainty.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro