Neural Sinkhorn Topic Model

08/12/2020
by   He Zhao, et al.
0

In this paper, we present a new topic modelling approach via the theory of optimal transport (OT). Specifically, we present a document with two distributions: a distribution over the words (doc-word distribution) and a distribution over the topics (doc-topic distribution). For one document, the doc-word distribution is the observed, sparse, low-level representation of the content, while the doc-topic distribution is the latent, dense, high-level one of the same content. Learning a topic model can then be viewed as a process of minimising the transportation of the semantic information from one distribution to the other. This new viewpoint leads to a novel OT-based topic modelling framework, which enjoys appealing simplicity, effectiveness, and efficiency. Extensive experiments show that our framework significantly outperforms several state-of-the-art models in terms of both topic quality and document representations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro