Neural Semi-Markov Conditional Random Fields for Robust Character-Based Part-of-Speech Tagging

08/13/2018
by   Apostolos Kemos, et al.
0

Character-level models of tokens have been shown to be effective at dealing with within-token noise and out-of-vocabulary words. But these models still rely on correct token boundaries. In this paper, we propose a novel end-to-end character-level model and demonstrate its effectiveness in multilingual settings and when token boundaries are noisy. Our model is a semi-Markov conditional random field with neural networks for character and segment representation. It requires no tokenizer. The model matches state-of-the-art baselines for various languages and significantly outperforms them on a noisy English version of a part-of-speech tagging benchmark dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro