Neural NID Rules

02/12/2022
by   Luca Viano, et al.
0

Abstract object properties and their relations are deeply rooted in human common sense, allowing people to predict the dynamics of the world even in situations that are novel but governed by familiar laws of physics. Standard machine learning models in model-based reinforcement learning are inadequate to generalize in this way. Inspired by the classic framework of noisy indeterministic deictic (NID) rules, we introduce here Neural NID, a method that learns abstract object properties and relations between objects with a suitably regularized graph neural network. We validate the greater generalization capability of Neural NID on simple benchmarks specifically designed to assess the transition dynamics learned by the model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset