Neural Networks and Value at Risk

05/04/2020
by   Alexander Arimond, et al.
0

Utilizing a generative regime switching framework, we perform Monte-Carlo simulations of asset returns for Value at Risk threshold estimation. Using equity markets and long term bonds as test assets in the global, US, Euro area and UK setting over an up to 1,250 weeks sample horizon ending in August 2018, we investigate neural networks along three design steps relating (i) to the initialization of the neural network, (ii) its incentive function according to which it has been trained and (iii) the amount of data we feed. First, we compare neural networks with random seeding with networks that are initialized via estimations from the best-established model (i.e. the Hidden Markov). We find latter to outperform in terms of the frequency of VaR breaches (i.e. the realized return falling short of the estimated VaR threshold). Second, we balance the incentive structure of the loss function of our networks by adding a second objective to the training instructions so that the neural networks optimize for accuracy while also aiming to stay in empirically realistic regime distributions (i.e. bull vs. bear market frequencies). In particular this design feature enables the balanced incentive recurrent neural network (RNN) to outperform the single incentive RNN as well as any other neural network or established approach by statistically and economically significant levels. Third, we half our training data set of 2,000 days. We find our networks when fed with substantially less data (i.e. 1,000 days) to perform significantly worse which highlights a crucial weakness of neural networks in their dependence on very large data sets ...

READ FULL TEXT

page 1

page 2

page 3

page 4

research
07/07/2021

Predicting Risk-adjusted Returns using an Asset Independent Regime-switching Model

Financial markets tend to switch between various market regimes over tim...
research
08/17/2022

Expressivity of Hidden Markov Chains vs. Recurrent Neural Networks from a system theoretic viewpoint

Hidden Markov Chains (HMC) and Recurrent Neural Networks (RNN) are two w...
research
06/17/2020

Markovian RNN: An Adaptive Time Series Prediction Network with HMM-based Switching for Nonstationary Environments

We investigate nonlinear regression for nonstationary sequential data. I...
research
07/28/2023

Dynamic Analysis and an Eigen Initializer for Recurrent Neural Networks

In recurrent neural networks, learning long-term dependency is the main ...
research
09/11/2018

Long-Term Occupancy Grid Prediction Using Recurrent Neural Networks

We tackle the long-term prediction of scene evolution in a complex downt...
research
07/18/2018

General Value Function Networks

In this paper we show that restricting the representation-layer of a Rec...
research
05/10/2021

On the Role of Incentives in Evolutionary Approaches to Organizational Design

This paper introduces a model of a stylized organization that is compris...

Please sign up or login with your details

Forgot password? Click here to reset