Neural Network-Based Abstract Generation for Opinions and Arguments

06/09/2016
by   Lu Wang, et al.
0

We study the problem of generating abstractive summaries for opinionated text. We propose an attention-based neural network model that is able to absorb information from multiple text units to construct informative, concise, and fluent summaries. An importance-based sampling method is designed to allow the encoder to integrate information from an important subset of input. Automatic evaluation indicates that our system outperforms state-of-the-art abstractive and extractive summarization systems on two newly collected datasets of movie reviews and arguments. Our system summaries are also rated as more informative and grammatical in human evaluation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset