Neural Lattice Decoders
Lattice decoders constructed with neural networks are presented. Firstly, we show how the fundamental parallelotope is used as a compact set for the approximation by a neural lattice decoder. Secondly, we introduce the notion of Voronoi-reduced lattice basis. As a consequence, a first optimal neural lattice decoder is built from Boolean equations and the facets of the Voronoi region. This decoder needs no learning. Finally, we present two neural decoders with learning. It is shown that L1 regularization and a priori information about the lattice structure lead to a simplification of the model.
READ FULL TEXT