Neural Integration of Continuous Dynamics

11/23/2019
by   Margaret Trautner, et al.
0

Neural dynamical systems are dynamical systems that are described at least in part by neural networks. The class of continuous-time neural dynamical systems must, however, be numerically integrated for simulation and learning. Here, we present a compact neural circuit for two common numerical integrators: the explicit fixed-step Runge-Kutta method of any order and the semi-implicit/predictor-corrector Adams-Bashforth-Moulton method. Modeled as constant-sized recurrent networks embedding a continuous neural differential equation, they achieve fully neural temporal output. Using the polynomial class of dynamical systems, we demonstrate the equivalence of neural and numerical integration.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset