Neural Generalized Ordinary Differential Equations with Layer-varying Parameters

09/21/2022
by   Duo Yu, et al.
21

Deep residual networks (ResNets) have shown state-of-the-art performance in various real-world applications. Recently, the ResNets model was reparameterized and interpreted as solutions to a continuous ordinary differential equation or Neural-ODE model. In this study, we propose a neural generalized ordinary differential equation (Neural-GODE) model with layer-varying parameters to further extend the Neural-ODE to approximate the discrete ResNets. Specifically, we use nonparametric B-spline functions to parameterize the Neural-GODE so that the trade-off between the model complexity and computational efficiency can be easily balanced. It is demonstrated that ResNets and Neural-ODE models are special cases of the proposed Neural-GODE model. Based on two benchmark datasets, MNIST and CIFAR-10, we show that the layer-varying Neural-GODE is more flexible and general than the standard Neural-ODE. Furthermore, the Neural-GODE enjoys the computational and memory benefits while performing comparably to ResNets in prediction accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset