Network satisfaction for symmetric relation algebras with a flexible atom
Robin Hirsch posed in 1996 the Really Big Complexity Problem: classify the computational complexity of the network satisfaction problem for all finite relation algebras A. We provide a complete classification for the case that A is symmetric and has a flexible atom; the problem is in this case NP-complete or in P. If a finite integral relation algebra has a flexible atom, then it has a normal representation 𝔅. We can then study the computational complexity of the network satisfaction problem of A using the universal-algebraic approach, via an analysis of the polymorphisms of 𝔅. We also use a Ramsey-type result of Nešetřil and Rödl and a complexity dichotomy result of Bulatov for conservative finite-domain constraint satisfaction problems.
READ FULL TEXT