Network-Decomposed Hierarchical Cooperation in Ad Hoc Networks With Social Relationships

09/03/2018
by   Cheol Jeong, et al.
0

In this paper, we introduce a network-decomposed hierarchical cooperation (HC) protocol and completely characterize the corresponding throughput--delay trade-off for a large wireless ad hoc network formed in the context of social relationships. Instead of randomly picking source--destination pairings, we first consider a distance-based social formation model characterized by the social group density γ and the number of social contacts per node, q, where the probability that any two nodes in distance d away from each other are socially connected is assumed to be proportional to d^-γ, which is a feasible scenario. Then, using muiltihop and network-decomposed HC protocols under our social formation model, we analyze a generalized throughput--delay trade-off according to the operating regimes with respect to parameters γ and q in both a dense network of unit area and an extended network of unit node density via a non-straightforward network transformation strategy. Our main results reveal that as γ increases, performance on the throughput--delay trade-off can remarkably be improved, compared to the network case with no social relationships. It is also shown that in the dense network, the network-decomposed HC protocol always outperforms the multihop protocol, while the superiority of the network-decomposed HC depends on γ and the path-loss exponent in the extended network.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro