Negative sampling in semi-supervised learning

11/12/2019
by   John Chen, et al.
0

We introduce Negative Sampling in Semi-Supervised Learning (NS3L), a simple, fast, easy to tune algorithm for semi-supervised learning (SSL). NS3L is motivated by the success of negative sampling/contrastive estimation. We demonstrate that adding the NS3L loss to state-of-the-art SSL algorithms, such as the Virtual Adversarial Training (VAT), significantly improves upon vanilla VAT and its variant, VAT with Entropy Minimization. By adding the NS3L loss to MixMatch, the current state-of-the-art approach on semi-supervised tasks, we observe significant improvements over vanilla MixMatch. We conduct extensive experiments on the CIFAR10, CIFAR100, SVHN and STL10 benchmark datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset