Near-Optimal Target Learning With Stochastic Binary Signals

02/14/2012 ∙ by Mithun Chakraborty, et al. ∙ 0

We study learning in a noisy bisection model: specifically, Bayesian algorithms to learn a target value V given access only to noisy realizations of whether V is less than or greater than a threshold theta. At step t = 0, 1, 2, ..., the learner sets threshold theta t and observes a noisy realization of sign(V - theta t). After T steps, the goal is to output an estimate V^ which is within an eta-tolerance of V . This problem has been studied, predominantly in environments with a fixed error probability q < 1/2 for the noisy realization of sign(V - theta t). In practice, it is often the case that q can approach 1/2, especially as theta -> V, and there is little known when this happens. We give a pseudo-Bayesian algorithm which provably converges to V. When the true prior matches our algorithm's Gaussian prior, we show near-optimal expected performance. Our methods extend to the general multiple-threshold setting where the observation noisily indicates which of k >= 2 regions V belongs to.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.