Near-optimal Reinforcement Learning in Factored MDPs: Oracle-Efficient Algorithms for the Non-episodic Setting

02/06/2020
by   Ziping Xu, et al.
9

We study reinforcement learning in factored Markov decision processes (FMDPs) in the non-episodic setting. We focus on regret analyses providing both upper and lower bounds. We propose two near-optimal and oracle-efficient algorithms for FMDPs. Assuming oracle access to an FMDP planner, they enjoy a Bayesian and a frequentist regret bound respectively, both of which reduce to the near-optimal bound O(DS√(AT)) for standard non-factored MDPs. Our lower bound depends on the span of the bias vector rather than the diameter D and we show via a simple Cartesian product construction that FMDPs with a bounded span can have an arbitrarily large diameter, which suggests that bounds with a dependence on diameter can be extremely loose. We, therefore, propose another algorithm that only depends on span but relies on a computationally stronger oracle. Our algorithms outperform the previous near-optimal algorithms on computer network administrator simulations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro