Near-optimal compressed sensing guarantees for total variation minimization

10/11/2012
by   Deanna Needell, et al.
0

Consider the problem of reconstructing a multidimensional signal from an underdetermined set of measurements, as in the setting of compressed sensing. Without any additional assumptions, this problem is ill-posed. However, for signals such as natural images or movies, the minimal total variation estimate consistent with the measurements often produces a good approximation to the underlying signal, even if the number of measurements is far smaller than the ambient dimensionality. This paper extends recent reconstruction guarantees for two-dimensional images to signals of arbitrary dimension d>1 and to isotropic total variation problems. To be precise, we show that a multidimensional signal x can be reconstructed from O(sd*log(N^d)) linear measurements using total variation minimization to within a factor of the best s-term approximation of its gradient. The reconstruction guarantees we provide are necessarily optimal up to polynomial factors in the spatial dimension d.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset