Near-Linear Time Homomorphism Counting in Bounded Degeneracy Graphs: The Barrier of Long Induced Cycles
Counting homomorphisms of a constant sized pattern graph H in an input graph G is a fundamental computational problem. There is a rich history of studying the complexity of this problem, under various constraints on the input G and the pattern H. Given the significance of this problem and the large sizes of modern inputs, we investigate when near-linear time algorithms are possible. We focus on the case when the input graph has bounded degeneracy, a commonly studied and practically relevant class for homomorphism counting. It is known from previous work that for certain classes of H, H-homomorphisms can be counted exactly in near-linear time in bounded degeneracy graphs. Can we precisely characterize the patterns H for which near-linear time algorithms are possible? We completely resolve this problem, discovering a clean dichotomy using fine-grained complexity. Let m denote the number of edges in G. We prove the following: if the largest induced cycle in H has length at most 5, then there is an O(mlog m) algorithm for counting H-homomorphisms in bounded degeneracy graphs. If the largest induced cycle in H has length at least 6, then (assuming standard fine-grained complexity conjectures) there is a constant γ > 0, such that there is no o(m^1+γ) time algorithm for counting H-homomorphisms.
READ FULL TEXT