Near-Infrared Image Dehazing Via Color Regularization
Near-infrared imaging can capture haze-free near-infrared gray images and visible color images, according to physical scattering models, e.g., Rayleigh or Mie models. However, there exist serious discrepancies in brightness and image structures between the near-infrared gray images and the visible color images. The direct use of the near-infrared gray images brings about another color distortion problem in the dehazed images. Therefore, the color distortion should also be considered for near-infrared dehazing. To reflect this point, this paper presents an approach of adding a new color regularization to conventional dehazing framework. The proposed color regularization can model the color prior for unknown haze-free images from two captured images. Thus, natural-looking colors and fine details can be induced on the dehazed images. The experimental results show that the proposed color regularization model can help remove the color distortion and the haze at the same time. Also, the effectiveness of the proposed color regularization is verified by comparing with other conventional regularizations. It is also shown that the proposed color regularization can remove the edge artifacts which arise from the use of the conventional dark prior model.
READ FULL TEXT