Navigating the dynamic noise landscape of variational quantum algorithms with QISMET

09/25/2022
by   Gokul Subramanian Ravi, et al.
0

Transient errors from the dynamic NISQ noise landscape are challenging to comprehend and are especially detrimental to classes of applications that are iterative and/or long-running, and therefore their timely mitigation is important for quantum advantage in real-world applications. The most popular examples of iterative long-running quantum applications are variational quantum algorithms (VQAs). Iteratively, VQA's classical optimizer evaluates circuit candidates on an objective function and picks the best circuits towards achieving the application's target. Noise fluctuation can cause a significant transient impact on the objective function estimation of the VQA iterations / tuning candidates. This can severely affect VQA tuning and, by extension, its accuracy and convergence. This paper proposes QISMET: Quantum Iteration Skipping to Mitigate Error Transients, to navigate the dynamic noise landscape of VQAs. QISMET actively avoids instances of high fluctuating noise which are predicted to have a significant transient error impact on specific VQA iterations. To achieve this, QISMET estimates transient error in VQA iterations and designs a controller to keep the VQA tuning faithful to the transient-free scenario. By doing so, QISMET efficiently mitigates a large portion of the transient noise impact on VQAs and is able to improve the fidelity by 1.3x-3x over a traditional VQA baseline, with 1.6-2.4x improvement over alternative approaches, across different applications and machines. Further, to diligently analyze the effects of transients, this work also builds transient noise models for target VQA applications from observing real machine transients. These are then integrated with the Qiskit simulator.

READ FULL TEXT

page 7

page 10

page 11

research
08/06/2023

Enabling High Performance Debugging for Variational Quantum Algorithms using Compressed Sensing

Variational quantum algorithms (VQAs) can potentially solve practical pr...
research
06/09/2023

VarSaw: Application-tailored Measurement Error Mitigation for Variational Quantum Algorithms

For potential quantum advantage, Variational Quantum Algorithms (VQAs) n...
research
10/15/2022

TopGen: Topology-Aware Bottom-Up Generator for Variational Quantum Circuits

Variational Quantum Algorithms (VQA) are promising to demonstrate quantu...
research
02/25/2022

CAFQA: Clifford Ansatz For Quantum Accuracy

Variational Quantum Algorithms (VQAs) rely upon the iterative optimizati...
research
07/31/2022

Parameter-Parallel Distributed Variational Quantum Algorithm

Variational quantum algorithms (VQAs) have emerged as a promising near-t...
research
07/28/2016

The Study of Transient Faults Propagation in Multithread Applications

Whereas contemporary Error Correcting Codes (ECC) designs occupy a signi...

Please sign up or login with your details

Forgot password? Click here to reset