NAGphormer: Neighborhood Aggregation Graph Transformer for Node Classification in Large Graphs
Graph Transformers have demonstrated superiority on various graph learning tasks in recent years. However, the complexity of existing Graph Transformers scales quadratically with the number of nodes, making it hard to scale to graphs with thousands of nodes. To this end, we propose a Neighborhood Aggregation Graph Transformer (NAGphormer) that is scalable to large graphs with millions of nodes. Before feeding the node features into the Transformer model, NAGphormer constructs tokens for each node by a neighborhood aggregation module called Hop2Token. For each node, Hop2Token aggregates neighborhood features from each hop into a representation, and thereby produces a sequence of token vectors. Subsequently, the resulting sequence of different hop information serves as input to the Transformer model. By considering each node as a sequence, NAGphormer could be trained in a mini-batch manner and thus could scale to large graphs. NAGphormer further develops an attention-based readout function so as to learn the importance of each hop adaptively. We conduct extensive experiments on various popular benchmarks, including six small datasets and three large datasets. The results demonstrate that NAGphormer consistently outperforms existing Graph Transformers and mainstream Graph Neural Networks.
READ FULL TEXT