Music Plagiarism Detection via Bipartite Graph Matching
Nowadays, with the prevalence of social media and music creation tools, musical pieces are spreading much quickly, and music creation is getting much easier. The increasing number of musical pieces have made the problem of music plagiarism prominent. There is an urgent need for a tool that can detect music plagiarism automatically. Researchers have proposed various methods to extract low-level and high-level features of music and compute their similarities. However, low-level features such as cepstrum coefficients have weak relation with the copyright protection of musical pieces. Existing algorithms considering high-level features fail to detect the case in which two musical pieces are not quite similar overall, but have some highly similar regions. This paper proposes a new method named MESMF, which innovatively converts the music plagiarism detection problem into the bipartite graph matching task. It can be solved via the maximum weight matching and edit distances model. We design several kinds of melody representations and the similarity computation methods according to the music theory. The proposed method can deal with the shift, swapping, transposition, and tempo variance problems in music plagiarism. It can also effectively pick out the local similar regions from two musical pieces with relatively low global similarity. We collect a new music plagiarism dataset from real legally-judged music plagiarism cases and conduct detailed ablation studies. Experimental results prove the excellent performance of the proposed algorithm. The source code and our dataset are available at https://anonymous.4open.science/r/a41b8fb4-64cf-4190-a1e1-09b7499a15f5/
READ FULL TEXT