Multiway Spectral Graph Partitioning: Cut Functions, Cheeger Inequalities, and a Simple Algorithm
The problem of multiway partitioning of an undirected graph is considered. A spectral method is used, where the k > 2 largest eigenvalues of the normalized adjacency matrix (equivalently, the k smallest eigenvalues of the normalized graph Laplacian) are computed. It is shown that the information necessary for partitioning is contained in the subspace spanned by the k eigenvectors. The partitioning is encoded in a matrix Ψ in indicator form, which is computed by approximating the eigenvector matrix by a product of Ψ and an orthogonal matrix. A measure of the distance of a graph to being k-partitionable is defined, as well as two cut (cost) functions, for which Cheeger inequalities are proved; thus the relation between the eigenvalue and partitioning problems is established. Numerical examples are given that demonstrate that the partitioning algorithm is efficient and robust.
READ FULL TEXT