Multivariate and Multi-step Traffic Prediction for NextG Networks with SLA Violation Constraints

04/21/2023
by   Evren Tuna, et al.
0

This paper focuses on predicting downlink (DL) traffic volume in mobile networks while minimizing overprovisioning and meeting a given service-level agreement (SLA) violation rate. We present a multivariate, multi-step, and SLA-driven approach that incorporates 20 different radio access network (RAN) features, a custom feature set based on peak traffic hours, and handover-based clustering to leverage the spatiotemporal effects. In addition, we propose a custom loss function that ensures the SLA violation rate constraint is satisfied while minimizing overprovisioning. We also perform multi-step prediction up to 24 steps ahead and evaluate performance under both single-step and multi-step prediction conditions. Our study makes several contributions, including the analysis of RAN features, the custom feature set design, a custom loss function, and a parametric method to satisfy SLA constraints.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro