Multitask and Multilingual Modelling for Lexical Analysis

09/07/2018
by   Johannes Bjerva, et al.
0

In Natural Language Processing (NLP), one traditionally considers a single task (e.g. part-of-speech tagging) for a single language (e.g. English) at a time. However, recent work has shown that it can be beneficial to take advantage of relatedness between tasks, as well as between languages. In this work I examine the concept of relatedness and explore how it can be utilised to build NLP models that require less manually annotated data. A large selection of NLP tasks is investigated for a substantial language sample comprising 60 languages. The results show potential for joint multitask and multilingual modelling, and hints at linguistic insights which can be gained from such models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset