Multiscale Finite Element Formulations for 2D/1D Problems

04/13/2023
by   Karl Hollaus, et al.
0

Multiscale finite element methods for 2D/1D problems have been studied in this work to demonstrate their excellent ability to solve real-world problems. These methods are much more efficient than conventional 3D finite element methods and just as accurate. The 2D/1D multiscale finite element methods are based on a magnetic vector potential or a current vector potential. Known currents for excitation can be replaced by the Biot-Savart-field. Boundary conditions allow to integrate planes of symmetry. All presented approaches consider eddy currents, an insulation layer and preserve the edge effect. A segment of a fictitious electrical machine has been studied to demonstrate all above options, the accuracy and the low computational costs of the 2D/1D multiscale finite element methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro