Multiple-objective Reinforcement Learning for Inverse Design and Identification

10/09/2019
by   Haoran Wei, et al.
0

The aim of the inverse chemical design is to develop new molecules with given optimized molecular properties or objectives. Recently, generative deep learning (DL) networks are considered as the state-of-the-art in inverse chemical design and have achieved early success in generating molecular structures with desired properties in the pharmaceutical and material chemistry fields. However, satisfying a large number (larger than 10 objectives) of molecular objectives is a limitation of current generative models. To improve the model's ability to handle a large number of molecule design objectives, we developed a Reinforcement Learning (RL) based generative framework to optimize chemical molecule generation. Our use of Curriculum Learning (CL) to fine-tune the pre-trained generative network allowed the model to satisfy up to 21 objectives and increase the generative network's robustness. The experiments show that the proposed multiple-objective RL-based generative model can correctly identify unknown molecules with an 83 to 100 percent success rate, compared to the baseline approach of 0 percent. Additionally, this proposed generative model is not limited to just chemistry research challenges; we anticipate that problems that utilize RL with multiple-objectives will benefit from this framework.

READ FULL TEXT
research
09/10/2021

Inverse design of 3d molecular structures with conditional generative neural networks

The rational design of molecules with desired properties is a long-stand...
research
04/29/2020

Molecular Design in Synthetically Accessible Chemical Space via Deep Reinforcement Learning

The fundamental goal of generative drug design is to propose optimized m...
research
09/15/2020

Scaffold-constrained molecular generation

One of the major applications of generative models for drug Discovery ta...
research
05/24/2023

Prompt Evolution for Generative AI: A Classifier-Guided Approach

Synthesis of digital artifacts conditioned on user prompts has become an...
research
11/04/2022

De novo PROTAC design using graph-based deep generative models

PROteolysis TArgeting Chimeras (PROTACs) are an emerging therapeutic mod...
research
10/05/2020

Goal-directed Generation of Discrete Structures with Conditional Generative Models

Despite recent advances, goal-directed generation of structured discrete...
research
08/06/2021

Molecule Generation Experience: An Open Platform of Material Design for Public Users

Artificial Intelligence (AI)-driven material design has been attracting ...

Please sign up or login with your details

Forgot password? Click here to reset